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ABSTRACT 

Planar laser-induced fluorescence (PLIF) is a widely applied non-invasive diagnostic 

technique in the combustion of power units. PLIF often detects CH and OH radicals to 
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be the key markers for chemical process. Therefore, the clarity of OH-PLIF and CH-

PLIF imaging is crucial for studying combustion phenomena. Given the short lifetime 

of CH radicals in flames, the signal-to-noise ratio (SNR) of CH-PLIF images is much 

lower than that of OH-PLIF images. Faced with the challenge that traditional denoising 

methods are ineffective for CH-PLIF images, this study proposes an improved Res-U-

Net model based on the U-Net network and incorporating residual connections. This 

model builds on the traditional U-Net architecture, incorporating previous usage 

experience and introducing a Shortcut Connection structure to enhance performance. 

To improve the model's denoising performance under extreme SNR conditions, this 

study employs a CH-OH collaborative denoising strategy, which uses OH-PLIF images 

with a higher SNR to assist in the denoising of CH-PLIF images. Comparisons with 

several other models on low-SNR datasets demonstrate that the proposed denoising 

model achieves the best denoising performance. 

KEYWORDS 

denoise, PLIF, combustion, deep learning, U-Net 

 

Novelty and significance 

This paper proposes an innovative denoising strategy to address the issues in current 

PLIF measurements and leverages the outstanding performance of neural networks in 

image denoising. A novel denoising neural network model, Res-U-Net, is developed by 

combining the advantages of U-Net and ResNet. By exploiting the high signal-to-noise 
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ratio (SNR) characteristics of OH-PLIF signals under low equivalence ratio conditions 

and their synchronous measurement technique with CH-PLIF, noise removal in CH-

PLIF measurements is achieved. This method is expected to be extended to processing 

other optical measurement images. 
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Nomenclature 

Symbols Abbreviation 

C Channels ReLU Rectified Linear Unit 

z Height Adam Adaptive Moment Estimation 

W Width MSE Mean Squared Error 

Φ Equivalence ratio PSNR Peak Signal-to-Noise Ratio 

V Volume flow rate SSIM Structural Similarity Index 

Q Diversion fraction NMSE Normalized Mean Squared Error

d 

Distance between the 

shooting point and the 

combustor exit 

Subscript 
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Ret Turbulent Reynolds number norm Normalization 

σ 
Noise density - adjusting salt-

and-pepper noise intensity 
min Minimum 

p 

Noise density - adjusting the 

intensity of salt-and-pepper 

noise 

max Maximum 

 

 

1 Introduction 

The application of optical diagnostic technologies in combustion is becoming more 

extensive, covering areas like the interaction between flow and flame [1], point 

extinction [2], soot production [3], and combustion instability [4]. Results from these 

diagnostics are usually obtained in image form. In data acquisition, data gathered by 

optical measurement systems inevitably includes noise, resulting from inherent sensor 

noise, optical system defects, and external environmental factors. Therefore, denoising 

this data to ensure the information's accuracy and extracting subsequent combustion 

characteristic parameters is a critical step in data processing. 

CH-PLIF measurement is a typical application of optical diagnostics in the 

combustion field. CH is a key component in the combustion chemical reaction process 

of hydrocarbon fuels, and its position marks the final step of the decomposition of 

hydrocarbon fuels [5]. Therefore, it reflects the location of the chemical reaction zone 

and is one of the important markers in optical measurements. CH measurements can 
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obtain the characteristics of the reaction zone under strong turbulence conditions, and 

the flame front can be extracted [6, 7]. However, under strong turbulence and low 

equivalence ratio conditions, the concentration of CH radicals is low, and their lifetime 

is short, resulting in a low signal-to-noise ratio (SNR) in CH measurements [8, 9]. In 

high-pressure environments or high-frequency measurements, the weak energy of 

single-pulse lasers further reduces the SNR [10, 11]. Researchers such as Meier [12] 

captured CH-PLIF distributions in flames with different Reynolds numbers (15000, 

30000, 45000, and 58000) under high turbulence conditions. They found that some 

experimental images were affected by background noise, presenting a sawtooth pattern. 

Chen et al. [13] investigated the effects of laser wavelength, laser energy, and 

equivalence ratio on CH-PLIF imaging. The results indicated that CH signals primarily 

exist at the base of the flame under low equivalence ratio conditions, with weak signal 

intensity. Furthermore, the excitation of CH signals requires an appropriate laser 

wavelength and energy; either too high or too low will reduce the SNR of CH-PLIF 

images. Especially when the equivalence ratio is below 0.7, the significant reduction in 

SNR makes CH-PLIF measurements quite rare [14]. For small amounts of background 

noise, methods such as median filtering [15, 16], Gaussian filtering [17, 18], wavelet 

denoising [19], and combined thresholding methods [20, 21] can effectively remove 

background noise. These methods perform well when there is a clear distinction 

between background noise and the signal. However, when processing low SNR images, 

traditional methods often struggle to precisely distinguish between signal and noise, 
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which may result in noise residue or the inadvertent removal of the signal. Miyauchi et 

al. [22, 23] conducted simultaneous CH-PLIF, OH-PLIF, and PIV measurements. Their 

experimental results show that the SNR of CH-PLIF images is significantly lower than 

that of OH-PLIF images, a phenomenon also observed in other studies [24-26]. Even 

under low equivalence ratio conditions, the OH signal strength remains relatively high 

[27]. In some studies, high SNR OH-PLIF images were still captured under low 

equivalence ratio (<0.6), high pressure, and high turbulence conditions [28, 29]. 

Furthermore, CH and OH exhibit a certain spatial correlation in the combustion field. 

For these reasons, we believe that OH-PLIF images can assist in the denoising of CH-

PLIF images. 

Traditional image denoising methods can be classified based on their principles 

into Spatial domain filtering, transform domain filtering, statistical models, and Hybrid 

denoising techniques [30]. In practical applications, Gaussian noise and salt-and-pepper 

noise are the two most common types of noise [31]. Gaussian filtering and median 

filtering in Spatial domain filtering are effective at handling these two types of noise, 

and are therefore the most widely used in practical applications. With the rapid 

development of artificial intelligence technologies, neural networks, due to their 

excellent learning ability, versatility, and flexibility, are playing an increasingly 

important role in multiple fields. Especially in the field of image denoising, the 

application of neural networks has significantly surpassed traditional image processing 

technologies and can effectively handle more complex noise issues. In fields such as 
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medical imaging [32], aerial photography [33], digital photography [34], and industrial 

inspection [35, 36], the efficient denoising capabilities of neural networks have been 

widely applied and recognized. Additionally, neural networks have shown their 

potential in post-processing for optical diagnostics. For example, Hasti and Shin [37] 

successfully used an improved U-Net network for denoising and droplet reconstruction 

of spray images; Han et al. [38] used an unsupervised convolutional denoising 

autoencoder (CDAE) to extract deep image features automatically; Strässle et al. [39] 

used deep learning methods to extract the flame front from PLIF images; Barwey et al. 

[40-42] used neural networks to reconstruct the velocity distribution in the flame field 

from PLIF-OH images. 

Given the current issues in PLIF measurements and the outstanding performance 

of neural networks in image denoising, this paper proposes an innovative denoising 

strategy. The strategy combines the advantages of U-Net and ResNet networks to 

construct a novel denoising neural network model. It utilizes the characteristics of OH-

PLIF signals, maintaining a high signal-to-noise ratio under low equivalence ratio 

conditions, along with the synchronous measurement technique with CH-PLIF, to 

achieve noise removal in CH-PLIF measurements. This method can potentially be 

extended to the processing of other optical measurement images. 

The structure of this paper is as follows: Section 2 introduces the basic concept 

and architectural details of the denoising model; Section 3 details the experimental 

design and data processing strategies; Section 4 describes the model's training process 
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and compares its performance with other denoising models; and Section 5 provides a 

detailed summary of the research findings. 

2 Technical strategy 

2.1 Comprehensive workflow of the denoising model 

Figure 1 shows the workflow for building the denoising model proposed in this research, 

segmented into four crucial steps: data acquisition, data processing, construction of 

network model, and model testing and comparison.  

Data acquisition: Through a CH-OH-PLIF high-speed measurement system, 

images of CH and OH distributions are captured at various positions above the outlet 

of the experimental combustor and are categorically stored based on different 

operational conditions. 

Data processing: The collected image data is preprocessed, including 

normalization to the range of 0–1, followed by denoising, data fusion (Concat), and the 

addition of Gaussian noise based on the normalized data. 

Construction of network model: Constructs a Res-U-Net network, employing 

the preprocessed data to build and train the network model. 

Model testing and comparison: Data that has never been encountered is input 

into the network to test the model's generalization ability and compare its performance 

with other existing models, thereby validating the proposed model's superiority. 
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Figure 1 Overall construction process of the denoising model. 

2.2 Res-U-Net network architecture and training method 

Neural network types include fully connected neural networks, convolutional neural 

networks, recurrent neural networks, generative adversarial networks, and Transformer 

networks. Each has its own advantages, and the most suitable network architecture 

should be selected based on the specific application scenario. For image data, 

convolutional neural networks can capture spatial structural information while 

maintaining spatial invariance. Additionally, the use of convolution operations 

significantly reduces the computational load. 

Two important network architectures emerged in developing convolutional neural 

networks: ResNet [43] and U-Net [44]. Before the advent of ResNet, it was observed 

that increasing the number of layers in CNNs for hierarchical learning could effectively 

enhance the network's ability to learn high-level features of images, thereby improving 
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its expressive power. However, as the number of layers increases, it becomes difficult 

for errors to be effectively backpropagated to all layers during the learning process, 

leading to vanishing and exploding gradients [45], limiting the development of deep 

CNNs. ResNet introduced the idea of residual learning into the CNN domain, using 

direct connections between different layers to allow the network to skip unnecessary 

learning processes, effectively solving the gradient explosion problem caused by 

increased network depth. The U-Net model is an improvement on fully convolutional 

networks (FCN) [46], featuring a symmetric encoder-decoder architecture and using 

skip connections to link different layers of the encoder and decoder. This enables the 

extraction of different levels of features from the image while preserving the spatial 

information, thereby achieving pixel-level classification. 

This study proposes a novel network architecture that combines the advantages of 

U-Net and ResNet, called Res-U-Net, with its structural details shown in Figure 2. Res-

U-Net retains the encoder-decoder framework of U-Net, but introduces the residual 

connection concept of ResNet in the downsampling and upsampling layers of both the 

encoder and decoder parts, to enhance the model's ability to capture relevant 

information and reduce interference from irrelevant information. 
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Figure 2 Res-U-Net Structures. 

In the training process of common denoising models, the model first receives noisy 

images, which are typically simulated by adding Gaussian noise, salt-and-pepper noise, 

or Poisson noise to the original clear images. Then, the model processes these noisy 

images and outputs the denoised images. Next, the model compares the denoised image 

with its original clear image, and calculates the loss function by analyzing the 

differences between the two. The value of this loss function is used to guide the 

optimization process of the denoising model, with the goal of minimizing the difference 

between the denoised image and the original clear image, thereby improving the 

denoising performance of the model. 

This method effectively solves most denoising problems and has become the 

mainstream strategy for addressing this challenge. However, when measuring CH 

radicals in flames, we encounter two major challenges: the naturally low concentration 

and short lifetime of CH radicals. Particularly, when high-frequency shooting is 

employed, the energy released by each laser pulse is relatively low, which further 
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reduces the fluorescence signal strength of CH radicals, leading to a significant decrease 

in the signal-to-noise ratio (SNR) of the CH images, thereby affecting the effectiveness 

of this method. 

In hydrocarbon fuel flame environments, OH radicals usually have a higher 

concentration in the high-temperature products of the flame, and many studies have 

confirmed that the spatial distributions of OH and CH radicals exhibit a certain degree 

of overlap [47-49]. Based on this characteristic, our study attempts to input both the CH 

images to be denoised and the OH images simultaneously into the Res-U-Net network, 

utilizing the information from the OH images to assist in the denoising process of the 

CH images. This denoising method is referred to as CH-OH cooperative denoising, with 

the specific process shown in Figure 3. This method leverages the correlation between 

the two radicals, providing a new perspective and support for the denoising of CH 

images, with the aim of improving the denoising performance through this cooperative 

processing approach. 

 
Figure 3 CH-OH collaborative denoising. 

3 Experimental device and data acquisition 
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3.1 CH-OH-PLIF High-Speed Measurement System 

The experiments in this study were mainly conducted at the Clean Combustion 

Laboratory at the University of Sydney, utilizing a high-speed CH-OH-PLIF imaging 

system, as shown in Figure 4. The system includes two laser diagnostic devices for 

OH-PLIF and CH-PLIF, as well as a burner. The burner has adjustable equivalence ratio 

(Φ), volumetric flow rate (V), flow split ratio (Q), and the distance between the 

measurement point and the burner exit (d). The turbulent Reynolds number (Ret) of the 

flame is controlled by adjusting V and Q. For more structural details, refer to Ref. [50]. 

In the CH-PLIF system, a 120 W EdgeWave laser generates a 532 nm laser at a 

frequency of 10 kHz, which pumps a Sirah dye laser to generate a 632 nm laser. The 

laser is frequency-doubled to generate 315.589 nm ultraviolet light. Then, a sheet beam 

optical element is used to expand the ultraviolet light to a width of 40 mm in the vertical 

direction and focus it directly above the burner exit, to excite the C-X electronic 

transition of CH molecules in the flame. For the OH-PLIF system, a 30 W EdgeWave 

laser generates a 532 nm laser at 10 kHz, which also pumps a Sirah dye laser to generate 

a 566 nm laser. Through frequency doubling and separation, 283.553 nm ultraviolet 

light is generated, and this beam is expanded to a width of 40 mm in the vertical 

direction by a sheet beam optical element and also focused directly above the burner 

exit, to excite the A-X electronic transition of OH molecules in the flame. 
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Figure 4 CH-OH-PLIF experimental system. 

The fluorescence signal collection system consists of two CCD cameras equipped 

with amplifiers. To reduce interference from Rayleigh scattering at a wavelength of 283 

nm, the camera collecting OH fluorescence signals is fitted with a 315 nm ±10 nm 

bandpass filter, specifically designed to capture the desired fluorescence signals. 

Meanwhile, the camera collecting CH fluorescence signals uses a 300 nm long-pass 

filter to collect the relevant fluorescence signals. To avoid interference from Rayleigh 

scattering signals at 315 nm, the OH excitation beam is delayed by 250 ns compared to 

the CH excitation beam. The fields of view (FOV) for the OH and CH signal collection 

are the same, measuring 24 mm × 28 mm. This setup ensures that the fluorescence 

collection system accurately captures the required fluorescence signals while 

minimizing interference and improving the quality and reliability of the experimental 

data. 

Figure 5 shows CH-OH-PLIF images under different equivalence ratios (Φ=0.65, 

0.85) and turbulent Reynolds numbers (Ret=599, 866). In Figure 5 (a), images obtained 

under Φ=0.85 and Ret =599 conditions are displayed, where both OH and CH images 
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are relatively clear. It can be observed that as the capturing height increases, the flame 

front begins to exhibit a distortion phenomenon. Nevertheless, the signal-to-noise ratio 

(SNR) of the CH image remains high, allowing for clear identification of the CH radical 

distribution. Comparing Figure 5 (a) with Figure 5 (b), it can be seen that an increase 

in the volumetric flow rate raises the turbulence level of the airflow, causing the flame 

front to rapidly break up at higher capturing heights, with a corresponding decrease in 

the CH radical SNR. Comparing Figure 5 (a) with Figure 5 (c), when the equivalence 

ratio is reduced to Φ=0.65 under Ret=599 conditions, the already low CH radical 

fluorescence signal is further weakened due to the reduction in equivalence ratio, 

particularly at higher capturing heights, where the CH image's SNR significantly 

decreases. 

 

(a)           (b)                  (c) 

Figure 5 CH and OH images: (i) Φ=0.85, Ret=599; (b)Φ=0.85, Ret=866; (c)Φ=0.65, Ret=599. 

3.2 Data processing and dataset partitioning 
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Typically, to address the problem of denoising, the construction of a dataset begins with 

acquiring high-quality, clear original images, upon which noise is artificially added to 

simulate low signal-to-noise ratio conditions. This aims to create a pair of images: one 

being the clear original, and the other being the noise-added image. This pair of images 

is then used to train the denoising network. However, in this study, the CH images 

obtained inherently contain a certain degree of noise, with no completely noise-free 

images available. Therefore, we must preprocess the existing images to ensure they 

meet the requirements for training the denoising model. 

For clarity, the images mentioned in this paper are labeled and briefly described in 

Table 1. 

Table 1 Naming and introduction of images. 

 Name Introduction 

1 CH-PLIF Original CH-PLIF image. 

2 OH-PLIF Original OH-PLIF image. 

3 CH-N The image obtained by normalizing the CH-PLIF data. 

4 OH-N The image obtained by normalizing the OH-PLIF data. 

5 CH-Gauss Denoised image processed by Gaussian filter denoising model 

6 CH-Media Denoised image processed by median filter denoising model 

7 CH-Gauss-

GN 

Image obtained by adding Gaussian noise to CH-Gauss image 

8 CH-Gauss-

SPN 

Image obtained by adding salt-and-pepper noise to CH-Gauss 

image 

9 U-Net Denoised image obtained using U-Net denoising model 

10 Res-U-Net Denoised image obtained using Res-U-Net denoising model 

11 OH-CH 

Res-U-Net 

Denoised image obtained using Res-U-Net denoising model 

Combined with OH-CH collaborative denoising 

12 CH-Label Manually labeled noise-free CH image 

3.2.1 Data set division 

Low-noise images are required as label images for the training process when 
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constructing the model. As shown in Figure 5, under the conditions of Φ=0.85 and 

Ret=599, the fluorescence signal of the CH radical is significantly stronger, resulting in 

a higher image signal-to-noise ratio. In this case, the distinction between the CH signal 

and noise in the image is quite clear (the average signal-to-noise ratio of the CH-Norm 

image exceeds 15 dB under this condition). Separating CH signal and noise is relatively 

easy, and the data is divided into training and validation sets with an 8:2 ratio. 

Meanwhile, the other two conditions shown in Figure 5, Φ=0.85, Ret=866, and Φ=0.65, 

Ret=599, are used as test sets, aiming to evaluate the model's denoising performance 

under higher turbulence and lower equivalence ratio conditions. The specific division 

of conditions is shown in Table 2. 

Table 2 Dataset condition. 

Data set Φ Ret z (mm) Images number

Train 0.85 599 0–70 6400 

Validation 0.85 599 0–70 1600 

Test 1 0.85 866 0–150 160000 

Test 2 0.65 599 0–150 160000 

3.2.2 Data preprocessing 

Given the significant difference in fluorescence signal intensity between CH and OH, 

the pixel values of the two in the original image are vastly different. To reduce the 

dependency between features and enhance the model's generalization ability, we 

normalized the pixel values of the CH and OH images to the range of 0 to 1 using the 

normalization Eq. (2). The normalized images are then named CH-N and OH-N, 

respectively. 
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min

norm
max min

X X
X

X X




                   （1） 

After normalizing the dataset, the training dataset is extracted separately, and 

Gaussian filtering is applied to the CH-N images (denoted as CH-N-G). Gaussian 

filtering aims to remove high-frequency noise in the image, thereby reducing its 

complexity. Then, the Otsu method calculates the threshold for the CH-N-G image to 

maximize the weighted value of the squared difference between the pixel intensity and 

its average intensity, generating the Binary Image Mask. To further optimize, 

morphological operations are used to remove small noise points in the binary image, 

and the processed CH-N-G is overlaid with the Binary Image Mask, achieving binary 

segmentation and effective noise reduction of the CH-PLIF image. This process is 

illustrated in Figure 6. For convenience, this noise reduction method is referred to as 

"Gauss", and the resulting image is named CH-Gauss, which will serve as the reference 

image for the model output. The method where Gaussian filtering is replaced by median 

filtering is referred to as "Media", and the resulting image is named CH-Media. 

 
Figure 6 Gauss method image denoising process and manual labeling process. 

To better evaluate the denoising effect of different models, the open-source data 
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annotation tool Label-Studio is used to manually label a portion of the original images 

in the validation set. For each height (z), 100 images are taken, resulting in a total of 8

×100=800 images, forming the noise-free dataset CH-Label. The specific process is 

shown in Figure 6. 

4 Result and discussion 

4.1 Training process and performance of the CH-OH collaborative 

denoising Res-U-Net model 

As shown in Figure 3 above, the Res-U-Net model is trained on the training set using 

the CH-OH collaborative denoising method. During the training process, each round of 

input consists of two images: one is OH-N, and the other is the corresponding CH-N 

image (OH-N & CH-N). Models using the CH-OH collaborative denoising method are 

distinguished by the prefix "CH-OH" added to their names. The model calculates the 

loss value (Loss) by comparing its predicted output with the corresponding CH-Gauss 

image, and updates the model's neuron coefficients based on this loss value. 

The training configuration includes a batch size of 10, with all model parameters 

optimized using the Adam optimizer and an initial learning rate set to 1e-3. The loss 

function used is mean squared error (MSE), and these hyperparameters were selected 

based on repeated experimental validation to determine the optimal configuration. All 

the code is written using the Pytorch framework and leverages CUDA technology for 

accelerated computation. The computer configuration used for model training is: 
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Intel(R) Xeon(R) Silver 4210R CPU * 2; NVIDIA GeForce RTX 2080Ti 11G GPU; 

64GB RAM. 

The maximum number of training epochs was set to 50, and we observed 

significant changes in the loss on both the training and validation sets as the epochs 

progressed, as shown in Figure 7. In the early stages of training, specifically within the 

first three epochs, the loss on the training set decreased sharply. Subsequently, from 

epoch 3 to epoch 15, the loss reduction rate significantly slowed down. After that, 

although the loss decreased, the reduction was extremely limited. On the other hand, 

the loss on the validation set decreased rapidly during the first six epochs, followed by 

some fluctuations between epochs 6 and 20, though the overall trend remained 

downward. This may be attributed to the training process becoming trapped in a local 

optimum, which caused the optimization direction to deviate from the global optimum, 

but in a subsequent epoch, the model escaped this local region and moved into a more 

favorable optimization region. After that, the loss reduction rate became very slow and 

almost stabilized. The training result at the end of epoch 50 was selected as the final 

form of the model. 
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Figure 7 Loss function during training. 

The Res-U-Net model using the CH-OH collaborative denoising strategy performs 

excellently in extracting CH signals in both the training and validation sets, and when 

compared to the Gauss method, both show high consistency. Specific results are shown 

in Appendix Figure A1. This study compares traditional denoising methods with other 

commonly used neural network denoising models. The traditional denoising methods 

include the Gauss model and Media model introduced in Section 2.2.2, while the neural 

network methods include the U-Net model and Res-U-Net model. Figure 8 shows the 

denoising performance of different models on the validation set, where the denoising 

effects of the Gauss model, Media model, and OH-CH Res-U-Net model are closest 

and yield the best results. Although the U-Net model and Res-U-Net model also 

effectively reduce noise in the images, these two models tend to enhance the CH signal 

strength. 

 

Figure 8 Denoising performance of different models on the test set: a, CH-N; b, Gauss; c, Media; 

d, U-Net; e, Res-U-Net; f, OH-CH Res-U-Net. 

In the field of image denoising, peak signal-to-noise ratio (PSNR), Structural 
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Similarity Index (SSIM), and normalized mean squared error (NMSE) are three 

commonly used metrics to evaluate the quality of image denoising. PSNR assesses the 

image restoration quality by comparing the pixel differences between the original and 

processed images. Its value is measured in decibels (dB), with higher values indicating 

better denoising performance. SSIM is a metric for evaluating the similarity between 

two images, taking into account image luminance, contrast, and structural information. 

The SSIM value ranges from -1 to 1, with values closer to 1 indicating that the denoised 

image is more similar to the original image. NMSE directly compares the pixel value 

differences between images, providing a unified standard across different scales or 

image backgrounds, with smaller values indicating greater similarity. 

The formulas for the three metrics are as follows: 
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MSE stands for mean squared error, which is used to evaluate the error between 

CH-Denoise images and the denoised images from various models; MAXⅠ refers to 

the maximum energy peak of the signal; bits represent the bit depth of pixel values in a 

single channel of the image; μ and σ respectively represent the mean and variance of 

the image; σxy is the covariance between image x and image y; C1 and C2 are small 

constants used to stabilize the division operation, typically set to 0; Ii is the i-th pixel 
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value of the original image, îI is the i-th pixel value of the denoised image, and N is 

the total number of pixels in the image. 

Table 3 presents the performance metrics of different models on the validation set. 

The PSNR, SSIM, and NMSE for each image were calculated by comparing with the 

CH-Label and then averaged. This is consistent with the direct comparison of image 

results, where the Gauss, Media, and OH-CH Res-U-Net models demonstrate the best 

denoising performance. 

Table 3 Performance metrics of different models on the test set (Mark1). 

Image quality 

metrics 
Gauss Media U-Net Res-U-Net 

OH-CH 

Res-U-Net 

PSNR 28.0673 27.8113 25.3079 26.1225 28.4020 

SSIM 0.9210 0.9186 0.9153 0.9212 0.9316 

NMSE 0.0906 0.0945 0.1600 0.1370 0.0891 

4.2 The denoising performance of different models on data augmented 

with artificial noise. 

Gaussian noise follows a Gaussian distribution (also known as a normal distribution) 

and simulates random noise in images, similar to the noise caused by the random 

performance of electronic devices. Salt-and-pepper noise appears as random black-and-

white pixels in an image, simulating the sporadic noise that may occur during image 

acquisition or transmission, akin to sudden anomalies. These two types of noise are 

common artificial noises used to test the performance of denoising models [51, 52]. 

Artificial noise of different intensities was added to the CH-Gauss images to 

evaluate the performance of different models systematically in handling noise of 

varying intensity and types. The results are shown in Figure 9, where column (a) 
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displays the CH-N images with different intensities of noise added. The first three rows 

add Gaussian noise, with the intensity controlled by adjusting the variance σ. The last 

three rows have salt-and-pepper noise added, with the intensity controlled by adjusting 

the noise density p. Columns (b) to (f) show the denoising effects of different models 

on these six images. 

 
Figure 9 The denoising performance of different models on Gaussian noise and salt-and-pepper 

noise.  

The Gauss model shows significant denoising performance when handling 

Gaussian noise with a standard deviation of σ=0.1 and salt-and-pepper noise with a 

noise density of p=0.1. However, as σ and p increase, its denoising performance 

significantly decreases. The Median model performs similarly to the Gauss model when 

handling Gaussian noise, with better denoising results at σ=0.1, but its performance 

deteriorates sharply as σ increases. In contrast, the Median model has a significant 

advantage in handling salt-and-pepper noise, effectively distinguishing noise, but as p 

increases, the CH signal is significantly enhanced. The U-Net model performs well 

under noise conditions of σ=0.1 and p=0.1, effectively separating CH signals from noise 
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and filtering out the noise. However, as noise intensity increases, the model's ability to 

distinguish CH signals significantly decreases, especially under conditions of σ=0.5 and 

p=0.5, where a large amount of CH signal is misclassified as noise. The Res-U-Net 

model performs relatively well under noise conditions of σ=0.1 and p=0.1, but there are 

still instances where some CH signals are misclassified as noise. As noise intensity 

increases, the performance of this model gradually weakens, and may even have 

adverse effects. In contrast, the OH-CH Res-U-Net model demonstrates excellent 

denoising capabilities across various noise intensities and types. Although it may 

enhance the CH signal under high noise intensity conditions, its ability to restore the 

distribution of CH signals remains superior. 

Tables 4 and 5 present the performance metrics of different models in handling 

Gaussian noise and salt-and-pepper noise at different intensities. The Gauss model and 

Media model show similar performance when handling Gaussian noise. As the intensity 

of Gaussian noise increases, the denoising performance of the models deteriorates. This 

is because the denoising principles of these two models heavily rely on pixel intensity. 

When the noise signal intensity increases, it becomes difficult to distinguish the CH 

signal. The Media model performs better when handling salt-and-pepper noise. 

However, a significant portion of the noise overlapping with the CH signal is retained. 

The U-Net model shows consistent performance in handling Gaussian noise and salt-

and-pepper noise at different intensities. The performance metrics decrease as the noise 

intensity increases. For the Res-U-Net model, the performance metrics decrease 
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significantly as noise intensity rises. Among all models, the OH-CH Res-U-Net model 

shows the best performance metrics. As the intensity of artificial noise increases, the 

decrease in performance metrics is relatively small. 

Table 4 The performance metrics of different models handling Gaussian noise at various 

intensities. 

σ 
Image quality 

metrics 
Gauss Media U-Net Res-U-Net 

OH-CH 

Res-U-Net

0.1 

PSNR 25.3112 24.3918 25.6265 23.7321 28.0711 

SSIM 0.9002 0.8873 0.9124 0.8880 0.9286 

NMSE 0.1553 0.1847 0.1487 0.2136 0.0950 

0.3 

PSNR 19.5268 19.4763 25.1354 15.9296 27.1124 

SSIM 0.6866 0.7108 0.8553 0.5933 0.9234 

NMSE 0.5719 0.5583 0.1403 1.2521 0.1121 

0.5 

PSNR 14.4017 14.2464 23.5494 15.9729 26.4262 

SSIM 0.2306 0.2637 0.8735 0.4753 0.9191 

NMSE 1.6253 1.6963 0.1955 1.1210 0.1261 

Table 5 Performance metrics of different models handling salt-and-pepper noise at various 

intensities. 

p 
Image quality 

metrics 
Gauss Media U-Net Res-U-Net 

OH-CH 

Res-U-Net

0.1 

PSNR 22.8507 24.6800 24.1248 24.4448 28.2208 

SSIM 0.8449 0.8880 0.8320 0.8644 0.9307 

NMSE 0.2483 0.1659 0.1998 0.1789 0.0922 

0.3 

PSNR 13.7644 21.7080 25.4816 16.6122 27.7901 

SSIM 0.3219 0.8659 0.7834 0.5760 0.9288 

NMSE 1.8635 0.3091 0.1369 1.0562 0.1001 

0.5 

PSNR 10.9111 19.9920 24.8828 14.5005 27.0927 

SSIM 0.1386 0.8551 0.8645 0.4965 0.9257 

NMSE 3.5475 0.4512 0.1439 1.5802 0.1139 

4.3 The denoising performance of different models on low SNR CH-

measurement 

Due to the low signal-to-noise ratio of the test set data, it is difficult to obtain "noise-

free" images, making it impossible to evaluate the denoising performance of the model 
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by calculating PSNR, SSIM, and NMSE. Therefore, in this study, manual annotation 

was performed on a subset of CH-N images from the Test 1 and Test 2 datasets (50 

images randomly selected from each height z, totaling 32×50=600 images), as shown 

in Figure 10. The average number and area of CH segments in CH-N images at each 

height were calculated, with the area represented by the number of pixels. 

 
Figure 10 Manual counting of CH fragments. 

Due to the large number of denoised images processed by different models (600

×5=3000 images), manual annotation would be time-consuming, and the statistical 

results may vary due to differences in annotators' standards. Since the images processed 

by the models have an improved signal-to-noise ratio compared to CH-N images, the 

Otsu method can be used to calculate a threshold, generate binary images, and calculate 

the number and area of CH segments (as shown in Figure 11). Subsequently, under 

different height conditions, the average number and area of CH segments in the 

denoised images of each model are calculated. Since all models use the same method, 

the consistency of the statistical criteria is ensured. The figure demonstrates the process 

of counting CH fragments for a Test 2 dataset image using OH-CH Res-U-Net and Res-

U-Net. The statistical results of OH-CH Res-U-Net are consistent with the manual 

annotation results in Figure 10, whereas the processing by Res-U-Net caused excessive 
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fragmentation of CH fragments, resulting in a significantly higher count than the 

manual annotation results. 

 

(a) 

 

(b) 

Figure 11 The CH image statistics process for the denoised images:(a) OH-CH Res-U-Net (b) 

Res-U-Net.  

Figure 12 (a) presents the average number of CH segments in images at different 

heights after denoising by various models under high Ret conditions (Test 1 dataset). At 

lower imaging heights (small z), the statistical results of the Gauss, Res-U-Net, and 

OH-CH Res-U-Net models are relatively close to the manual annotations. However, as 

the imaging height z increases, the error in the number of CH segments identified by 

the U-Net and Res-U-Net models gradually increases. In contrast, the variation trends 

of the Gauss, Media, and OH-CH Res-U-Net models are highly consistent with the 

manual annotations. Among them, the OH-CH Res-U-Net model yields results that are 

closest to the manual annotations at greater heights (larger z). Figure 12 (b) shows the 

average pixel area of CH segments at different heights after denoising by various 



 Page 30 of 41 

 

models. At lower image capture heights (z<70), the results of the Res-U-Net and OH-

CH Res-U-Net models are very close to the manually processed results. However, as 

the image capture height increases, the results of the Res-U-Net model gradually 

deviate from the manually processed results. Meanwhile, the performance of the U-Net 

model gradually improves, achieving results comparable to the OH-CH Res-U-Net 

model. Additionally, the results of the Gauss and Media models exceed the manually 

processed results at all image capture heights. In summary, when processing data under 

high Ret conditions, the OH-CH Res-U-Net model demonstrates the best overall 

performance. Appendix Figure A2 presents the denoising results of different models 

under high Ret conditions (Test 1 dataset). 
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(b) 

Figure 12 Test 1 dataset: (a) CH segment count and (b) CH area. 

Due to the short lifetime of CH radicals, reducing the equivalence ratio causes a 

rapid decline in the signal-to-noise ratio (SNR) of CH-PLIF images. Particularly in 

images captured at higher heights (large z values), a large amount of noise signals with 

intensities similar to the CH signal appear, significantly increasing the difficulty of 

denoising. Figure 13 (a) presents the average number of CH segments in images at 

different heights after denoising by various models under low equivalence ratio 

conditions (Test 2 dataset). As the image capture height z increases, the discrepancies 

between the statistical results of the Gauss, Media, and U-Net models and the manually 

labeled results gradually increase. In contrast, the statistical results of the Res-U-Net 

model show an initial increase followed by a decrease, with the CH segment count 

falling below the manually labeled results when z exceeds 80. Among them, the OH-

CH Res-U-Net model demonstrates the best performance. Although there is a slight 

increase in the discrepancy between the CH segment count from the model and the 

manually labeled results at lower image capture heights, the overall trend remains 

consistent. When the image capture height z exceeds 100, the error remains low. Figure 
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13 (b) presents the average pixel count of CH segment areas in images at different 

heights after denoising by various models. At lower image capture heights (z<70), the 

results of the Gauss, Media, and OH-CH Res-U-Net models are very close to the 

manually processed results. As the image capture height z increases, the Gauss, Media, 

and U-Net models retain noise, leading to CH area values gradually exceeding the 

manually processed results. In contrast, the Res-U-Net model exhibits over-denoising, 

mistakenly removing portions of the CH signal, causing the calculated CH area to be 

lower than the manually processed results. In summary, under reduced equivalence ratio 

conditions, the OH-CH Res-U-Net model still outperforms the other models. Appendix 

Figure A3 presents the denoising results of different models under low equivalence ratio 

conditions. 
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(b) 

Figure 13 Test 2 dataset: (a) CH segment count and (b) CH area. 

5 Conclusion 

This study proposes a novel optical diagnostic image denoising method, called the Res-

U-Net model, which combines the advantages of U-Net and ResNet. To address the 

situation of extremely low signal-to-noise ratios, the model employs the CH-OH 

collaborative denoising strategy, designed explicitly for denoising CH-PLIF images, 

effectively solving the issues of CH signal misdeletion and the introduction of 

secondary noise. The following conclusions are drawn by comparing the performance 

of different denoising models on data collected under various parameters: 

(1) On the validation set, the denoising effects of the five models—Gauss, Media, 

U-Net, Res-U-Net, and OH-CH Res-U-Net—are all significant, with clearer CH 

contours. The U-Net and Res-U-Net models slightly enhanced the CH signal. After 

comparing with the manually annotated noise-free dataset CH-Label and calculating 

the PSNR, SSIM, and NMSE metrics, it was found that the Gauss and OH-CH Res-U-

Net models performed the best, while the performance of the other three models slightly 
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decreased. 

(2) The OH-CH Res-U-Net model still maintains good denoising performance 

when handling Gaussian noise and salt-and-pepper noise of varying intensities. By 

comparing the performance metrics of different models, it was observed that the PSNR, 

SSIM, and NMSE metrics of all models decreased as the noise intensity increased, with 

the OH-CH Res-U-Net model exhibiting the smallest reduction in performance among 

all models. 

(3) The OH-CH Res-U-Net model still outperforms all other denoising models on 

the high turbulence Reynolds number dataset (Test 1) and low equivalence ratio dataset 

(Test 2). The OH-CH collaborative denoising method optimizes the performance of the 

Res-U-Net network on low SNR images, minimizing the misdeletion of CH signals to 

the greatest extent. 

In summary, under conditions of relatively high equivalence ratio, all types of 

models can effectively identify and remove noise signals from the images; thus, any 

model can achieve satisfactory denoising performance under such conditions. 

Considering the experimental cost, it is not necessary to synchronously acquire CH-

OH-PLIF images in such cases. However, when the equivalence ratio decreases and 

turbulence intensity increases, the signal-to-noise ratio of the images drops significantly, 

and model performance also deteriorates considerably. Therefore, in such scenarios, it 

is recommended to use the CH-OH Collaborative Denoising approach, specifically the 

CH-OH Res-U-Net model, for image processing. 
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Appendix 

 
(i)                                 (ii) 

Figure A1 Denoising results of the Res-U-Net model using the CH-OH collaborative denoising 

strategy on the training and validation sets  

(i) Training set. (ii) Validation set a:CH-N. b:CH-Gauss. c: OH-CH Res-U-Net 
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Figure A2 Denoising effects of different models on Test 1 dataset 

a:CH-N. b:Gauss. c:Media. d: U-Net. e: Res-U-Net. f: OH-CH Res-U-Net 
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Figure A3 Denoising effects of different models on Test2 dataset  

a:CH-N. b:Gauss. c:Media. d: U-Net. e: Res-U-Net. f: OH-CH Res-U-Net 


